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TECHNICAL MEMORANDTJM X-53997 

SOME AP ON S 
OF TH M 

k 

The analysis of a time series is very important in many experiments 
(such as vibrational testing of structures).  Seemingly, the two functions 
desired most often are the power spectral density function and the correlation 
function. Theoretically, if one is known exactly, so is the other. In 
practice, small e r r o r s  in one may cause large e r r o r s  in the other, This 
discussion includes power spectral density functions, autocorrelation 
functions, cross-spectral density functions, cross-correlation functions, 
and other related functions. 

There are three separate aspects of the spectral analysis, 
(1) definition of spectrum, (2) calculation of the defined spectrum, and 
(3 )  interpretation of the calculated spectrum. A l l  three problems are 
considered her e. 

The most direct route from a time series (discrete or  continuous) 
to a spectral density function is the Fourier transform. In the past, the 
computer time required to calculate a Fourier transform made this approach 
impractical; as a result, most approaches were indirect. The correlation 
function for a limited number of lags was calculated, then the Fourier 
transform of the correlation function was calculated. Recent developments 
in procedures for complex arithmetic have made the calculation of Fourier 
transforms of discrete time series feasible, Because older methods have 
been in use longer, change to the direct Fourier transform method is slow. 

This discussion explains the uses and limitations of the new approach 
using the Fast  Fourier Transform. 



R TRANSFORM 

A detailed discussion of the Fourier transform, with the necessary 
and sufficient conditions for the existence of the transforms, is found in 
many textbooks. Here, the existence of the integrals or  sums will be 
assumed to exist. In the Appendix, the procedure known as the Fast 
Fourier Transform is explained more fully. 

If x ( t )  is a time series and if the two integrals 

00 

dt 
-jZn ft 

X( f )  = J x ( t ) e  

and 

-00 

exist, X( f )  is called the Fourier transform of x ( t )  , and x ( t )  is called 
the inverse Fourier transform of X( f )  . They, X( f )  and x ( t )  , are 
frequently called transform pairs. 

In general, the time series that are recorded for analysis are finite 
and the existence of the preceding integrals are guaranteed by the assump- 
tion that the series is zero outside some time interval (usually 0 5 t < T).  
Under these assumptions these integrals become 

0 

where F is an upper bound of the frequencies found in x ( t )  e Also, in 
practice, the time series is a discrete time series ( o r  must be made into 
one) of N values usually equally spaced. Therefore, the above integrals 
become 
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N- I -j2n fti 
x(f) = (At)  x( t i )  e 

i=O 

with 

T = N * A t  

and 

N-1 +j2n f t 
f .  = i ( A f )  , (6) 

i k  
1 

x(t,) = (Af) X(fi)  e 
i=O 

where the last expression is summed on frequency. These sums a r e  
probably more familiar as 

X ( f )  = (At)  x( t i )  [,os 27r fti - j sin 27r f t . ]  
1 

and 

1 x ( t )  = (Af) X(f . )  cos 27r f.t -I- j sin 27r f.t 
1 1 1 

(7) 

In the first  formula, one may calculate X( f )  for any f by simply inserting 
that value of f in the sum and summing the values. In the second equation, 
the same is true of any t value if X( f )  is known for all f . These 
transforms a r e  usually referred to as  Discrete Fourier Transforms, or 
(DFT).  If the sampling rate is sufficient, the value of the Discrete Fourier 
Transform should agree very closely with the Fourier transform evaluated 
at  the same f value. 

The Fast  Fourier Transform (FFT)  is just the DFT with some added 
restrictions and some innovations in the method of calculation. These 
restrictions are ( I )  N (the number of points) must be a composite number; 

-. , and ( 3 )  the I 2  N- 1 
T 

(2) the calculated values of f are  0, T T . . e 
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points must be equally spaced. For the limited values where X(f)  is 
calculated, the FFT and the DFT should agree to the accuracy of the program 

used. A great many of the programs available insist that N = 2 for some 
integer a . It seems to be desirable in all cases that N have no prime 
factor greater than 5 .  

a 

Since the transform is the integral part of this study, it must be 
calculated with a reasonable degree of accuracy. However, the function of 
concern is the power spectrum and the discussion of accuracy will be 
included in that section. 

R SPECTRUM 

There are several definitions of power spectrum in the literature [i]. 
In theory, ,the direct definition of the power spectral density function of x(t)  
is 

where 

rn 

and XT(f) is the complex conjugate of X (f)  

series in the cases considered here, the definitions will be 

Since x ( t )  is a finite T 

s X ( f )  = T [Xcf, X(f ) ]  

and 

0 
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This definition is for a time series where t runs from 0 to T and f runs 

from - - Af to - Af in the usual Discrete Fourier Transform approach, 

but f runs from 0 to N(Af )  in the Fast Fourier Transform approach. 
Both of these a r e  effectively two-sided spectral functions. It can be shown 

N N that if X(f)  is calculated from - ; Af to -Af , X(kAf) =X(-kAf) 
2 

and if f is calculated at 0 , Af , . . . , NAf , then X(kAf) =x[ (N-k)Af] (I 

Therefore in the first case, S ( f )  is symmetric about f = 0 , and in the 

N 
second case it is symmetric about 2 (Af) e 

N N 
2 2 

X 

Some writers call the function of equations ( l l a )  and ( l i b )  the 
periodogram of x (t) [ 21 and take m time records of length T and average 
these to get the spectral density function. Their definition would be 

m 

i=l i X 
(12) 

where S ( f )  is the spectral density function of the ith time ser ies  by the 

previous definition o r  the periodogram by their  definition. In actual 
problems, it is common practice to have a one-sided spectral function, 
defined as  

X i 

In this report, the spectral density function will be as defined by 
equations ( l l a )  and ( l i b ) .  If some modification is desired, it will be 
called the modified spectral function. 

There a re  many ways to modify the spectral density function. One is 
given above where m series of length T a re  used and their spectral 
density functions a r e  averaged. The more common modifications a r e  to 
weight the time ser ies  before finding the Fourier transform, or by weighting 
the calculated Fourier transform before calculating the spectral density 
function. Usually, these procedures are referred to as weighting, 
smoothing or filtering. Some of the common weighting functions or  filters 
a r e  given later in this report [ I ,  2, 31. However, for deterministic 
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functions, the results are more accurate without the filtering when the time 
T and the sampling rate are correctly chosen. 

Some other useful functions, easily calculated from the FFT and 
power spectral density functions, a r e  discussed here. If x ( t )  and y ( t )  
are two time series of the same length and sample rate, the cross  power 
spectral density function is 

9 

or for our approximation 

Also, the autocorrelation function and cross-correlation function are 
Fourier transforms of the power spectral density function and cross spectral 
density function, respectively, i. e. , 

and 

00 

df j2n f 7  
Rxy(7)  = S ( f )  e 

XY -00  

(67) 

Under the restrictions of the Appendix, if S ( f )  is entered instead of 

the time series in the FFT routine, the autocorrelation function is the output; 
if S 

X 

( f )  is used for input, the cross-correlation function is the output. 

Another function frequently desired is the phase angle between two 
XY 

time series. If the cross  power spectral density function S ( f )  is written 

as a complex function 
XY 
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then the phase angle e is 

If the correlation functions are desired, it is recommended by some [I, 2 J 
that the time series x ( t )  or  y ( t )  be altered by addition of the same 
number of zeros as the number of values of the correlation function desired. 
For  example, if the time series consists of 1024 points and 100 values of 
the correlation function are desired, the last 100 values would be replaced 
by zeros. With the altered time series, the correlation functions computed 
via the FFT yields better agreement to the direct correlation method. 

FILTERS OR WEIGHTS 

Two commonly used programs for vibration analysis are RAVAN [ 41 
and STAN'. These use the Blackman-Tuckey method. 

In the Blackman-Tuckey method of calculating the power spectra, 
filtering is necessary even for periodic deterministic data. W'ith the FFT 
approach, filters are not required for periodic data when the length of the 
record is chosen correctly. 

The filter or weight should be designed for the particular problem. 
However, some of the common filters are discussed here. 

Defining the time series x ( t )  to be zero outside a finite interval 
- T 5 t < T is equivalent to using a weight function w( t )  = I on this interval 
and zero elsewhere. Now, according to Fourier transform theory, the 
Fourier transform of a product w ( t )  x ( t )  is the convolution of W ( f )  with 
X(f ) .  Mathematically, this can be expressed as the transform of w ( f )  x ( t ) :  

The effect of using a short sample of the record is shown in Figure 1 [ 51. 

1. Newberry, M. H. : The Statistical Analyzer Program (STAN) a Internal 
Note IN-COMP-67-1, George C. Marshall Space Flight Center, September 
1967. 
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X x 

0- t  0-f  

NOTE: Ignoring the early and late parts of the function has 
the effect of "blurring" its spectrum. A s  shown 
here, the broad peaks AA of the transform a r e  little 
affected; the rapid oscillations BB almost disappear; 
and the narrow peak at zero frequency is reduced. 
This conclusion is physically reasonable since cutting. 
off the ends of the function (a) leaves most of the high 
frequency oscillations and simultaneously deletes the 
slow ones and halves the area under the curve. The 
function has been chosen symmetrically to  avoid the 
need to represent complex values in the transform. 

Figure 1. Example of the convolution theorem. 

If the first line (a) is x ( t )  and its transform X(f )  and the second 
then the last line (b) is the weight function w (t) and its transform W ( f )  

line (c) is w ( t )  x(t)  and its transform. Notice that the higher frequency 
components of the transforms of x( t )  and w ( t )  x ( t )  a r e  very similar. 
However, in this case, the lower frequency components are greatly altered. 
Also, the value at f = 0 is much lower in the weighted case. The process of 
convolution causes a cancellation when there is a rapid oscillation, as in 
this case. 

8 



For the Discrete Fourier Transform or  Fast Fourier Transform, 
this same situation applies unless the frequencies a re  discrete and the time 
interval is chosen so that the calculated values a r e  the actual frequencies 
present. In this case with deterministic functions, the results a r e  very 
accurate e 

This problem of using a finite record cannot be avoided. Comparison 
of this analysis with that of a longer segment of the time series will often 
help one to see the actual situation since the narrower bandwidth tends to 
separate the peaks. 

One of the weights recommended is [ 21 

w ( t )  = f ( I  - c o s  - for O ( t < O . i T  , 
0. IT  

w ( t )  = 1 for O.1T I: t 5 0.9T 9 (21)  

for 0 . 9 T < t s  T . ( t  - 0. 9T) 
0. IT  w ( t )  = J [I + C O S T  

2 

If one considers the above weight function and compares its spectra or  
transform with the square weighting function above, one sees  that the side 
lobes a re  much smaller. This means that the frequencies in these side 
bands contribute less  to the value calculated for a given frequency [ I ] .  

Another weight function used [ 61 is 

2 z i  w(t . )  = sin N J 
(22) 

or x 

Fourier coefficients a 's and b 's can be calculated without the weight k k 
function, and then the coefficients can be weighted so that 

is weighted by w( t . )  . One of the advantages of this filter is that the 
j 3 

a; = ( - a  k- I +2a  k - ak+l (23) 

9 



and 

The document cited in Reference 6 recommends further smoothing by 
calculating 

Pk = - 1 ( a i 2 + b i 2  
2 Y (25) 

where P is the average power due to the kth freqdency component, and 

then calculating 
k 

I P i  = 7 ( Pk-l + 2P + Pk+i k (26) 

when noise is present. This last step is  equivalent to weighting the auto- 

covariance function with cos2 - in the STAN program. 7rT 

n 

There are many other documented weighting or filtering approaches 
[2,  5, 61. 

I t  should be realized that smoothing, filtering or  weighting basically 
degrades the resolution. Sharp peaks that might occur in a particular record 
are smoothed out so that the analysis of different records of the same 
general happening are more nearly the same. The improvement is  in 
stability o r  reproduciblity. The user should decide first whether he wants 
resolution or stability. Then, if he desires stability, the proper filter 
should be chosen for his problem. 

One of the most commonly used class of weights is a generalized 
class of cosine tapers. The transform of the generalized form is  

1 0  



where m = fT . This weight is capable [3]  of reducing the contribution 

from adjacent frequencies separated by more than f =r e However, 

optimum choice of m requires the advance knowledge of the minimum 
separation of any two frequencies of interest. 

m 

ACCURACY OF FFT 

For the FFT problem, the main sources of e r r o r  are sampling rate, 
numerical integration, quantization and the number of calculations required. 

The numerical integration scheme approximates the Fourier integral 
by a series 

where N e At = T  and 

1 = x(ti) cos 2n ft .  - j sin 2n f t  
'i [ 1 i (29) 

This particular form does not lend itself to easy theoretical analysis. How- 
ever,  it is very similar to the trapezoidal integration formula 

(At) [ 3 2 + y1 + y 2 .  . + yN-l + "1 2 9 (30 )  



for which the e r ro r  estimates a re  known. The upper bound to the e r r o r  in 
this formula is [ 71 

Ny" (At)3 
12 

E = max 

where y" is the second derivative of x ( t )  [cos 27r f t  - j sin 27r ft]. If it is 
assumed that x ( t )  can be expanded into a trigonometric ser ies ,  the four 
terms involved for each f .  are (cos 27r f . t )  (cos 27r f t )  , 
- j ( s in  27r fit) (sin 27r f t ) ,  - j (cos 2n fi t)  sin 2n f t ,  sin 2n f . t  cos 27r f t  . 

1 1 

1 

These terms are very similar and only one is treated here. Since the 
integrals of these terms vanish unless f = f .  

Then, y ' ( t )  is -4n f cos 27r f t (s in  27r f t )  , y" (t) = S7r2 f2 (sin2 27r f t  - 
cos2 27r f t )  , and I y"(t)  I 5 S 2 f 2  a Now, let T = I unit of time. Then, 

consider y ( t )  = cos2 27r ft. 
1 ,  

I 
kf if k samples are taken on each cycle of y ( t ) ,  N = kf and A t  = - . 

Hence , 

(kf) (87r2f2) ( j$) 8 2  - -  
- 12k? 

E 5  
0.12 

1 The integral of cos2 27r f t  between 0 and. I is - 
2 '  

Hence, the maximum 

14 percentage e r r o r  is o r  roughly . This indicates the maximum 
i 2k2 

e r ro r  for 10 samples per cycle of the given frequency is 14 percent. In 
deterministic cases,  the e r r o r  is much smaller than the theoretical limit 
when the sample rate exceeds 5 samples per cycle. For lower rates, it is 
very close. In one problem with 3 samples per cycle, the e r r o r  was 100 
percent. Thus, e r ro r s  resulting from sample rate and e r ro r s  resulting 
from numerical integration procedure are closely associated. 

The quantization e r r o r s  must be treated statistically. If it is 
assumed that the quantization e r ro r s  satisfy certain common statistical 
models, the e r ro r s  in the final answers are very small. Two examples 
that will be discussed later indicate that this conclusion is valid in these 
cases. 

12 



The propagation and round-off e r r o r s  have been treated by Welch I. 81 
and have not been treated here. Using his assumptions, the percentage 
e r r o r  was very low, usually less than 0.1 percent. 

While e r r o r  estimates are very worthwhile, experiments with 
functions where the answers are known or  can be compared with some 
accepted standard are very desirable. 

The first case chosen was  the deterministic function 
X(f)  = 10 cos 20.5 .Irt , 
two-fold: ( I )  to show the effect of the record length T on resolution, 
(2)  to show the accuracy of the method. 

(f  = 10.25) . The objective in this experiment was 

The results when the time T was - ’ - - I ,  2, and 4 seconds are 
8 ’ 4 ’ 2 ’  

shown in Table I. It is obvious if one graphs the results that as T increases 
the spectral density function tends toward a peak at 10 1/4 cycles per unit 
of time. A t  T = 4, the function is zero everywhere except at 10 1/4 cycles 
as it should be. Moreover, the peak value is 50 and this is the theoretical 
value. For  T ,  any integral multiple of 4, the results will repeat. 

The values for the power spectral density at other frequencies when 
T < 4 a r e  due to the model. Effectively the FFT calculates the Fourier 
series coefficients for a function which agrees with the given function from 
0 to T,  and then repeats itself with period T . Clearly, in the given 
case,  the two functions were not the same until T = 4. These values are 
usually referred to as the results of leakage. 

Since nothing is known about the values of the spectral density 
function between calculated values, discretion must be used in interpreting 
a single analyzed record. If a frequency component falls between calculated 
values of the spectral density function, the calculated values on each side 
will compensate for the missed frequency. The Fourier coefficients decay 

, where f is the actual frequency and f is the calculated 
I as 

a c  
frequency . 

f - f  a C 

Studying two or more of these cases with T < 4 should give a 
better understanding than one case with a fixed T . 

The second example chosen was  a square wave with amplitude 64 
and at 32 cycles per second. The sample rate was chosen to be 2048 samples 
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TABLE i. SPECTRAL ANALYSIS O F  x(t) = 10 COS 2 0 . 5 ~  t 

= 2  = 4  N = 32; T = 1/2 N = 128 ? = 256 J = 8: T = 1/8 N = 16: T = 1/4 N =  64; t = 

PSD 
Init2/Hz 

0.2948 
- 

PSD 
Jnit2/Hz 

0.1215 
- 

PSD 
Jnit'/Hz 

0.0968 
- PSD 

0.0122 

0.0123 

- 
G(f) 

(Unit) 

0.0607 

PSD 
Jnit2/Hz 

6.924 

G(f) 
[uni t )  ' 
0.0737 

G(f) 
(Unit) 

0.0968 

G( f )  

0.0244 

0.0246 

0.000 
0.250 
0.500 

1.000 
1.250 
1.500 
1.750 

0.0127 

0.0134 

- 
0.0145 

0.0160 

0.0987 

0.1046 

0.1158 

0.0987 

0.1046 

0.0255 

0.0269 

0.0290 

0.0320 

0.0359 

0.0411 

- 
0.1310 

- 

0.0655 2.000 
2.250 
2.500 
2.750 

3.250 
3.500 
3.750 

4.000 
4.250 
4.500 
4.750 

0.1158 0.0180 

0.0206 

0.9332 0.0837 0.1674 0.1346 0.1346 0.0480 

0.0571 

0.0240 

0.0286 

0.2333 

0.1665 0.1665 0.0694 

0.0863 

0.0347 

0.0431 

5.000 
5.250 
5.500 
5.750 

6. 000 
6.250 
6.500 
6.750 

7.000 
7.250 
7.500 
7.750 

8.000 
8.250 
8.500 
8.750 

9.000 
9.250 
9.500 
9.750 

10. 000 
10.250 
10.500 
10.750 

11.000 
11.250 
11.500 
11.750 

12. ooc 
12.250 
12.500 
12.750 

0.2748 

- 

0.0551 

0.0724 

- 
0.098E 

0.1420 

0.2237 

0.3393 

0.1101 

0.1448 

0.1978 

0.2839 

0.1373 0.2237 

0.3393 

5.881 47.049 3.0507 12.203 0.3812 0.7625 0.6322 0.6322 0.4365 

0.7431 

0.218: 

0.3715 

1. 839 1.839 1.5010 

4.2989 

0.7505 

2.149 

- 
19.952 

10.582 

- 
200.0 

!4.4255 48.8511 41.54i L1.541 39.9042 

11.1640 
50.0000 

0.0000 

4. 1890 4.1890 4.7187 

1.7526 

2.359 

0.876: 

0.7972 

- 

0.461: 

0.287: 

- 

0.3986 0.7014 0.7014 0.9226 

0.5758 

7.4488 29.7 

0.0000 
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TABLE i . ( Concluded) 

N 8; T = 1/8 N = 32; T = 1/2 N = 6 4 ; t = 1  N = 128; t = 2 N = 16; T = 1/4 

G(f)  PSD 
(Unit) Unit2/Hz 

0.9435 3.774 

N = 256; t = 4 - 

PSD 

0.1988 

0.1469 

- 

- 
0.1138 

0.0914 

- 
0.0755 

0.0638 

- 

G(f)  

0.3977 

0.2938 

- 

__ 
0.2276 

0.1828 

- 
0.1510 

0.1275 

PSD 
Unit2/Hz 

0.1396 

G(f )  
( Unit) 

0.2600 

0.1285 

1.0739 

PSD 
Jnit2/Hz 

0.2600 

0.1285 

0.0739 

PSD 
Jnit2/Hz Frequency 

13.000 
13.250 
13.500 
13.750 

14.000 
14.250 
14.500 
14.750 

15.000 
15.250 
15.500 
15.750 

b 

16.000 
16.250 
16.500 
16.750 

0.4995 3.996 0.0238 0.0477 1.0467 0.0467 0.1097 

0.0958 

0.0548 

0.0479 

17.000 
17.250 
17.500 
17.750 

1.0315 0.0315 0.0847 

0.0758 

0.0424 

0.0379 

18.000 
18.250 
18.500 
18.750 

0.0684 

0.0623 

- 
0.0572 

0.0528 

- 
0.0491 

0.0459 

- 
0.0431 

0.0407 

- 
0.038G 

0.0367 

0.0342 

0.0312 

- 
0.0286 

0.0264 

- 
0.0245 

0.0229 

0.0216 

0.0204 

- 
0.0193 

0.0184 

0.0105 

0.0052 

0.0210 

0.0105 

1.0223 

I.01G4 

1. 0124 

I. 0096 

3.0077 

0.0223 

0.0164 

0.0124 

0.0096 

0.0077 

19. 000 
19.250 
19.500 
13.750 

20.000 
20.250 
20.500 
20.750 

0.4362 1 .7446 

0.2915 1.6604 

0.237 0.9487 

50.85 

21.000 
21.250 
21.500 
21.750 - 

0.0028 22.000 
22.250 
22.500 
22.750 

0.0056 

23.000 
23.250 
23.500 
23.750 

0.0350 

0.0336 

- 

0.0175 

0.0168 

- 
0.01G2 

3.00G3 

3.0052 

0.0063 

0.0052 24.000 0.5794 0.0724 0.0015 0.0030 

0.0044 0.0044 0.0151 

0.0142 
- 25.000 

26.000 0.0038 0.0038 

0.0033 0.0033 27.000 

28.000 

TOTALS 

0.0135 

0.0130 

- 
- 0.0000 0.0005 0.0009 

51.33 

0.0030 0.0030 
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per second with T = 1 second. The objective was to compare the accuracy 
of the FFT with the theoretical answers and also to compare it with the 
results from RAVAN and STAN for a similar time series. 

The calculated values of the PSD and the theoretical values for the 
first 10 components are tabulated in Table 2. The percentage e r r o r  based 
on the maximum theoretical value is roughly 0.04 percent. The actual 
value of the e r r o r  decreases with higher frequency. 

A direct comparison with RAVAN and STAN values was not made 
since the example recorded in STAN2 used a square wave of 100 cycles per 
second and 8000 samples per second. However, the actual e r r o r s  in these 
cases increased with increasing frequency. With the FFT,  the percentage 
e r ro r  fell between the values of RAVAN and STAN for the lower frequencies 
For  higher frequencies, the FFT answers had smaller percentage e r r o r s  
than either RAVAN or STAN, even though their sample rate was higher per 
cycle. 

TABLE 2. SQUARE WAVE (Amplitude 64) 

Freq. 

32 

96 

160 

224 

288 

352 

416 

480 

544 

608 

FFT (PSD) 

3318.76 

367.577 

131.577 

66.487 

39.763 

26.268 

18.544 

13.739 

10.572 

8.400 

Freq. 

32 

96 

160 

224 

288 

3 52 

41 6 

480 

544 

608 

Theory (PSD) 

3320.0925 

368.899 

132.8037 

67.757 

40.989 

27.439 

19.646 

14.756 

ll. 488 

9.197 

c 

2. ibid. 
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Two channels of data from test AS-506 were used for several 
different studies. The first four of these studies were to show the effect 
of the sampling rate and the part of the records used. A l l  four were taken 
from the two channels of data with a time slice from 60 seconds to 62.048 
seconds . 

The first analysis used the first I .  024 seconds of data from each 
channel with a sampling rate of I000 samples per second. The predominant 
(largest PSD) frequencies and their magnitudes are shown in Table 3 for 
both channels. 

The second analysis used a time slice of I second from 60.0 to 61.0 
seconds of each channel. The sample rate was 1024 samples per second. 
The results of this analysis are shown in Table 4. 

Even though the sample rate and time interval were very nearly the 
same, some changes in the predominant frequencies did occur. No rigorous 
explanation of these differences is offered. Since the different lengths of 
record forced the calculation of the FFT at different discrete values of 
frequency, these variations may result from the sharpness of the peaks on 
the curves. 

The third and fourth analyses were made to further check the effect 
of sampling rate and length of record and also to check whether these 
particular time series were self-stationary with the given lengths of record. 

If the time ser ies  were self-stationary with time T ~ the results 
from any two segments of the record with length T would be the same. 

Table 5 shows the results for a time slice from 61. 024 to 62.048 
seconds with a sample rate of I000 per second. Table 6 shows the results 
of a time slice from 61.0 to 62. 0 seconds with a sample rate of 1024 per 
second. 

Again, there is considerable variation between Tables 5 and 6 
because of the sample rates and lengths of record. Also, Tables 3 and 5 
differ as do Tables 4 and 6. This indicates that the time series are not 
self-stationary with records of length I second or  1. 024 seconds. I t  should 
be noted that the predominant frequency is basically the same for  the given 
channel in all four cases. Many of the others occur in each case but their 
rankings are different. 

17 



TABLE 3. FFT - TIME FROM 60.0 TO 61.024 

Channel I 

Freq. 

186.523 

156.250 

177.734 

150.391 

145.508 

151.367 

168.945 

187.500 

162.109 

159.180 

Amp. (PSD) 

5.513 

2.690 

2.172 

2.094 

2.042 

I. 806 

I. 666 

I. 513 

I. 474 

I. 419 

Freq. 

Channel 2 

Freq. 

187.500 

281.250 

186.523 

337.891 

0.977 

213.867 

235.352 

182.617 

228.516 

207.031 

Amp. (PSD) 

TABLE 4. FFT - TIME FROM 60.0 TO 61.0 

Channel I 

187.00 

153.00 

156.00 

202.00 

152.00 

178.00 

163.00 

6.00 

I. 00 

169.00 

Amp. (PSD) 

8.015 

2.729 

2.262 

I. 831 

I. 726 

I. 672 

I. 662 

I. 4914 

I. 424 

I. 135 

26.783 

4.537 

4.263 

3.973 

3.915 

3.834 

3.065 

2.979 

2.675 

2.662 

Channel 2 

' Freq. 

188.00 

282.00 

1.00 

2.00 

344.00 

226.00 

215.00 

219.00 

183.00 

365.00 

~ 

Amp. (PSD) 

28.641 

5.52 

5.157 

4.924 

4.173 

3.643 

3.622 

3.315 

2.939 

2.632 
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TABLE 5. FFT - TIME FROM 61.024 TO 62.048 

Channel I 

Freq. 

186.523 

0.977 

158.203 

170.898 

163.086 

10.953 

147.461 

180.664 

195.312 

152.344 

Amp. (PSD) 

10.208 

6.998 

3.483 

2.668 

I. 768 

I. 734 

1. 367 

I. 312 

1. 258 

1. 150 

Freq. 

Channel 2 

Freq. 

187.50 

188.477 

2.930 

215.820 

226.562 

204.102 

220.703 

239.258 

214.844 

347.656 

Amp. (PSD) 

Channel I 

Amp. (PSD) 

5.838 

4.601 

I. 965 

1. 443 

I. 339 

I. 286 

I. 285 

I. 278 

1.263 

I e 235 

21.869 

8.372 

6.717 

4.602 

3.817 

3.774 

3.541 

3.428 

3.378 

3.269 

TABLE 6. FFT - TIME FROM 61.0 TO 62.0 

187.00 

186.00 

160.00 

194.00 

7.00 

159.00 

154.00 

60.. 00 

180.00 

140.00 

Channel 2 

Freq. 

188.00 

189.00 

215.00 

282.00 

281.00 

233.00 

249.00 

205.00 

172.00 

376.00 

Amp. (PSD) 

23.727 

15.633 

8.054 

5.739 

4.687 

4; 063 

3.714 

3.655 

3.579 

3.450 
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The next two analyses were made to compare the results of runs of 
length 2T with those of length T and also to compare the results of the 
same analyses performed by STAN. 

Table 7 shows the results of the analysis of 2.048 seconds of data 
with a sampling rate of 1000 per second and Table 8 shows the results of 
analysing a 2 second record with sampling rate of 1024 samples per second. 
The agreement between these two cases seems to be better than for the 
shorter records. 

Tables 9 and 10 show the results of analysing the same data as 
Tables 7 and 8 but using STAN. The STAN program was set up to find the 
predominant frequencies up to 200 cycles per second. There is very good 
agreement between these methods as to the predominant frequency in each 
case. It should be noted that the slightly different sampling rate and length 
of records affected the results of the STAN program fully as much as  it did 
the FFT. 

These results are also shown in Figures 2 through 9. Figure 2 
should be compared with Table 7, channel I, and Figure 3 to Table 7, 
channel 2. Figure 4 corresponds to Table 8, channel 2. Figure 6 
corresponds to Table 9, channel I, and Figure 7 to Table 9, channel 2. 
Figures 8 and 9 correspond to Table 10, channels I and 2, respectively. 

Two other experiments were performed to study the effect of the 
number of bits. When the data was changed from 10 bits to 6 bits, the 
change in the larger peaks was only about 10 percent. Changing from 10 
bits to 2 bits gave about the same results for the major peak. These results 
a r e  shown in Figures 10 through 13. From this, it appears that the number 
of bits used is not too significant. 

Two further analyses were performed. The purpose of these two 
was to check the results of the FFT when used to calculate the frequency 

response function of a system. Two time series, 100 e and 

100 e sin 12 .rrt , were chosen. Since these functions are obviously not 
stationary, the spectral density function was modified. In this study, the 
quantity 2 ?T ( f )  X(f )  was used and compared with the theoretical value of 
2 IH (f ) 1 where H (f)  is the frequency response corresponding to the given 
time response. The factor of 2 was  included in order to use only positive 

frequencies. These results are given in Table 11 for  100 e and Table 

12 for 100 e 

- 1 O t  

-2t 

- 1 O t  

-2t  sin 12rt. The totals shown in the tables are for the integrals 
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TABLE 7. FFT - TIME FROM 60.0 TO 62.048 

Channel I 

Freq. 

186.523 

0.488 

169.434 

I. 465 

0.977 

155.762 

152.832 

187.012 

4.395 

60.059 

Amp. (PSD) 

6.961 

4.135 

I. 474 

I. 406 

1. 402 

1.294 

I. 181 

I. 1001 

I. 063 

0.967 

Freq. 

Channel 2 

Freq. 

187.500 

187.958 

188.477 

188.956 

215.332 

0.488 

281.250 

223.145 

216.306 

209.961 

I'ABLE 8. FFT - TIME FROM 60.0 TO 62.0 

Channel I I 
I 

187.00 

186.5 

0.500 

187.5 

60.0 

156.0 

169.5 

177.5 

152.0 

194.0 

Amp.. (PSD) 

13.431 

7.586 

4.009 

3.576 

2.904 

2.820 

2.675 

2.549 

2.064 

I. 997 

Amp. (PSD) 

3.764 

3.457 

2.023 

I. 635 

I. 568 

I. 351 

I. 140 

I. 049 

I. 034 

Q. 944 

Channel 2 

Freq. 

188.0 

187.5 

189.0 

0.50 

281.5 

188.5 

189.5 

212.5 

216.5 

206.0 

Amp. (PSD) 

13.898 

7.615 

6.251 

5.301 

4.505 

3.162 

2.352 

2.236 

2.230 

2.156 
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TABLE 9. STAN - TIME FROM 60.0 TO 62.0 

Channel 1 Channel 2 

Amp. (PSD) Freq. Amp. (PSD) Freq. 

187.0 

156.0 

170.0 

6.0 

153.0 

163.0 

159.0 

178.0 

60.0 

195.0 

10.,005 

2.434 

2.105 

2.000 

1. 978 

1. 841 

1. 772 

1. 595 

1. 533 

1. 343 

188.0 

182.0 

196.0 

193.0 

165.0 

8.0 

172.0 

176.0 

60.0 

155.0 

30.393 

3.122 

2.621 

2.313 

2.042 

1. 825 

1.628 

i .  595 

1. 357 

1. 350 

TABLE I O .  STAN - TIME FROM 60.0 TO 62.048 

Channel 1 Channel 2 

Freq. Amp. (PSD) Freq. Amp. (PSD) 

186.8 

155.8 

152.3 

169.3 

177.3 

170.8 

4.5 

163.3 

158.3 

60. 1 

8.898 

1. 753 

1. 555 

I. 407 

1. 399 

1. 369 

1. 313 

1. 151 

1.036 

1. 022 

187.8 

3.0 

1. 0 

182.3 

180.8 

192.3 

195.3 

193.8 

184.8 

171.8 

26.646 

3.240 

2.615 

2.235 

1.820 

1. 713 

1. 711 

1. 402 

i. 266 

1. 203 
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- l O t  TABLE 11. TOTAL POWER FOR 100 e 

Freq. 

0 

0.977 

I. 953 

2.930 

3.906 

4.883 

5.859 

6.836 

7.813 

8.789 

9.766 

Total 

1000 Samples/Sec 
1.024 sec 

104.17 

146.68 

80.57 

46.01 

28.75 

19.39 

13.87 

10.38 

8.05 

6.41 

5.23 

497.86 

Theory 

100.00 

145.30 

79.81 

45.58 

28.47 

19.21 

13.74 

I O .  28 

7.97 

6.35 

5.17 

500.00 

of the area under the curves 2 %(f) X(f )  and 21 H(f )  I 
It should be noted that the e r ro r  in 2 IH(f) l 2  is 4 IH f I times as large 
as the e r r o r  in I H (f) I e 

, respectively. 

Hence, for  the value of IH(f)  I at 6 cycles per second in Table 12, 
the e r r o r  should be approximately I part in 50 for 2 seconds of data and 
about I part  in 500 000 when 16 seconds of data were used. 
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Freq. 

0 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Total 
Power 

TABLE 12. TOTAL POWER FOR l o o  e-2t sin 12rt 

51 2 
Samples/ 

Sec 
2 sec 

6.7392 

14.2477 

17.0152 

23.7952 

42.7892 

131.7444 

1203.7800 

94.4052 

21.8684 

8.5886 

4.2691 

2.4271 

I. 5062 

1242.70 

512 
S ample s/ 

Sec 
4 sec 

6.9865 

14.7744 

17.6442 

24.6747 

44.3709 

136.6147 

1248.2800 

97.8950 

22.6768 

8.9061 

4.4269 

2.5169 

I .  5619 

1244.74 

256 
Samples/ 

Sec 
4 sec 

6.9675 

14.7353 

17.6016 

24.6245 

44.3037 

136.5003 

1248.2704 

97.9904 

22.7245 

8.9363 

4.4484 

2.5330 

I. 5747 

1244.74 

512 
Samples/ 

Sec 
16 sec 

6.9865 

14.7843 

17.6561 

24.6914 

44.4006 

136.7063 

1249.1187 

97.9607 

22.6920 

8.9121 

4.4299 

2.5186 

I. 5630 

1246.03 

Theory 

6.9968 

14.7972 

17.6701 

24.7082 

44.4642 

136.7443 

1249.1188 

97.9291 

22.6760 

8.9020 

4.4228 

2.5132 

I. 5587 

1246.49 
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Figure 2. FFT - Power spectral density, Channel I, 1000 samples per second, 
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Figure 3. FFT - Power spectral density, Channel 2, 1000 samples per second. 
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Figure 4. FFT - Power spectral density, Channel I, 1024 samples per second. 
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Figuer 5. FFT - Power spectral density, Channel 2, 1024 samples per second. 
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Figure 6. STAN - Power spectral density, Channel 1, 1000 s m p l e s  per second. 
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Figure 7. STAN - Power spectral density, Channel 2, 1000 samples per second. 
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Figure 8. STAN - Power spectral density, Channel 1, 1024 samples per second. 
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Figure 9. STAN - Power spectral density, Channel 2, 1024 samples per second. 
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Figure 10. Power spectral density from six-bit data, Channel I. 
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Figure 1 1. Power spectral density from six-bit data, Channel 2. 
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Figure 12. Power spectral density from two-bit data, Channel I. 
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Figure 13. Power spectral density from two-bit data, Channel 2. 
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The results for these two cases are very accurate. The maximum 
percentage e r r o r  for I H(f )  I is for  the 0 frequency value of H( f )  in 
Table 11 and this is less than 2 percent. The maximum percentage e r r o r  
relative to the maximum value of 1 H ( f )  I for the other terms in Table 11 
is less than 0.5 percent. In Table 12, the maximum percentage e r ro r  in 
I H ( f )  I relative to the maximum value of I H ( f )  I is less than 0.2 percent. 

NTE R P RETAT 

The spectral density function is calculated at discrete points. In 
general, nothing is known about its value between these points. The graphs 
in Figures 2 through 9 a r e  the products of spectral density function and 
bandwidth. 

Without prior knowledge of the spectral density function, one cannot 
tell whether indicated energies at adjacent points result from one or  more 
frequency components. In this case, a more detailed analysis is required. 
Frequently, the analysis of a longer segment of the time series will suffice. 
This is verified by Table 1. 

In the cases studied here, it appears that most of the smooth peaks 
resulted from one frequency falling between the calculated values. In the 
two ca&s of actual observed data, it was obvious that small changes in the 
points where the FFT was calculated made large changes in the maximum 
values calculated. In other words, the maximum calculated value may not 
be a very good approximation of the true maximum value in the neighborhood 
of that point. However, with the recommended sampling rates  and length 
of series analyzed, the values of the spectral density function are as  good 
approximations of the true values as any other discrete method. 

AND SOFTWAR C HA RA CTE R 

The time required to calculate the FFT and the power spectral 
density depends on the number of values of the time ser ies ,  the number of 
bits used to express the value of the function, and the computer and display 
used. 
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The number of computation operations required to perform the FFT 
and N data points is proportional to N logz N versus N2 for  the 
classical Blackman-Tuckey approach. When N is greater than 1023, the 
time can be about 100 times faster for the F F T  approach then for the 
classical approach. An even greater time savings can be achieved utilizing 
hardware to calculate the FFT,  which is called the Fast Fourier Analyzer 
( F F A ) .  

Special purpose hardware, such as the F F A  hardware, can be 
attached to the mainframe computer as a peripheral to one of the mainframe 
input/output (I/O) channels. The mainframe computer controls the F F A  
hardware via priority interrupts or other program,logic. The FFA hard- 
ware has a separate core memory to allow simultaneous operations to be 
performed by the mainframe computer and F F A  hardware. This is a very 
important advantage for many real-time data processing applications such 
as image enchancement, spectral analysis, radar,  sonar, and vibration 
analysis. See summary Table 15 for some typical FFA's. 

Since the F F A  typically produces a squared quantity summed over 
a large data population N , the number of bits to resolve the correct  
answer is defined by the following equation: 

where J is the number of bits that will define the maximum population N 
to be considered by the F F A .  K is the A/D bit word size not including the 
sign. Therefore, the F F A  hardware specifications that define the complex 
arithmetic bit register resolution to maintain accuracy without data 
compression is R bits. 

Often, the test engineer wants to know how many data channels may 
be analyzed by the F F A  in real time. Since this will depend on the specific 
F F A  and computer used, these timing equations are given as  a guide to aid 
the engineer in this evaluation. 

T = HBN+Pi  

T = H B N + P  

i INPUT 

OUTPUT 
0 S 

,u see 

p sec 

Tf = 4N log N + 2N + P p see 
S 

F F T  
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= 6 N + P  
m r MULT T 1.1 sec  

Spectral 
Density 

= T f + T  
TSD m 

N 

B 

P 
i 

S 
P 

H 

P r 

is the number of data points (must be a power of two) of the 
real o r  imaginary data array; 

is the number of bytes in each element of the data array; 

is the program C P U  overhead to acquire input data, convert 
to engineering unit, and load F F A  data memory; 

is the CPU program overhead to service the priority interrupt 
service subroutine, store complex results, and decrement 
counters and other program logic to orderly proceed through 
the FFT; 

is the channel transfer time per byte; 

is the C P U  program overhead to convert the FFT real and 
imaginary array to power spectral densities, and conversion 
for output display. 

Tables 13 and 14 show a typical test case using two different 
computers to perform the FFT with and without F F A .  To perform on-line 
quick-look analysis, the most time consuming part is the integration time 
of the F F A  (Table 14) .  In our investigation, the next time consuming item 
was the display time of the CRT. This limits the number of the data 
channels that may be analyzed during real time to one data channel every 
13 seconds for the SDS-930 computer system and one channel for  every 
five seconds for  the SIGMA-5 computer; real time could not be considered 
for most vibration applications because the software speed of the FFT would 
be too slow. Without the F F A ,  the time required for analysis and display 
for  one channel is 98 seconds with the SDS-930 computer and 12.2 seconds 
for  the SIGMA-5 computer. The type of mainframe computer used will  
influence the choice of the F F A  hardware. Also, a fast and more advanced 
computer may not require F F A  hardware for some applications. 
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A 
0 

Type 
Of 

Test  

TABLE 13. TYPICAL CHARACTERISTICS OF ENVIRONMENTAL TESTS 

Highest 
Typical Time Frequency 

Duration/Te st C ontent/Ch. 
(see) (Hz) 

Sine 
Sweep 

Sine 
Dwell 

Random 

0 - 540 2000 
5 40 1000 
540 500 
540 30 

0 - 10 3000 
10 1000 
10 500 
10 30 

0 - 10 5000 
10 2000 

Typical Sampling 
Rate Channella 

8 000 - 10 000 
4 000 - 5 000 
1 5 0 0  - 2 500 

100 - 150 

8 000 10 000 
4 000 5 000 
1 5 0 0  2 500 

100 150 

10 000 12 000 
4 000 6 000 

No Channels 
Re qui red 

Total/On-Line 

14/2 
28/12 
32/ 12 
32/12 

14/2 
28/12 
32/12 
32/12 

11/2 
2 8/2 

System Recording/ 
Thoroughput Rate a 

( On-Line) 

115 200 
115 200 

80 000 
4 800 

115 200 
115 200 

80 000 
4 800 

115 200 
115 200 

a .  Data samples/second 



TABLE 14. F F T  TIMING ESTIMATES 

SDS-930 XDS-SI 
N = 2048 N = 4096 N = 2048 

Opera tion (sec) (sec) (sec) 

Acquire x ( t )  in CPU 
mainframe memory T 0.5 I. 0 0 .1  

engineering units T 0.25 0.5 0. I 

i 

Transform to 

i 

Transform to 
zero mean T 0 .1  0.2 0. 05 

Spectra Computation 
by software without 

i 

90 270 10 
S 

Tf 
FFA' 

0.006 0.012 0.003 
i T b Load FFA memory 

F F A  solution time (FFT 
service subroutine plus 
overhead and spectra 

conversion) 5 15 2.5 
S 

P b 

CRT display overhead P 7 14 2 
r 

Total time with F F A  
simultaneous input/ 
output throughput b 12 27.77 4.753 

Total time 
simultaneous input/ 
output with software 97.856 285.712 12.253 
F F T ~  

a. Software option 
b. Hardware option 

MA 5 
N =4096 

(sec) 

0.2 

0.2 

0.1 

31 

0.006 

6.5 

4 

11.0006 

35.506 
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TABLE 15. TYPICAL FFA'S AND THEIR BASIC CHARACTERISTICS 
' TEXAS 
INSTR II 
VERSION 

II 

TEXAS 
INSTR II 
VERSIOF 

111 

TIME 
DATA 

VERSIQF 
1 

I BM 

4096 1001 2048 I 2048 ~ 4096. 

I 8192 I 32K 16384 16384 4096 

1 R.M. 1 R. M. 2 R.M. 

n H OTHER OTHER I 
X X x X I  

I x I x  X X X I X  

2 2 

18 16 a5 2/23 I 10 

8 16 8 12 I a 

TPUT I 12 I 32 18 16 

9 9 25 25 I 
EST. C I $70,000 1$356,550 $70,000 $66,925 NA 

= HARDWARE, R.M. = REAL MULTIPLIER, MS = MILLISECONDS. 



Some work was done to determine the effect of the number of bits 
used in the quantization of the data on the calculated values of the FFT and 
the power spectral density function. The few cases studied seem to indicate 
that the number of bits used was not too significant. Some improvement in 
the speed of calculation usually follows when fewer bits are used. However, 
scaling problems are introduced and the effect of the small  changes in FFT 
and power spectra may cause large changes in the autocorrelation function 
and other related functions. This a rea  needs more study. 

Another area of concern is the autocorrelation and cross-correlation 
functions. Most of the literature recommends some type of filter of the 
original data. With deterministic data, the results were good without 
these filters. Study of the effect of these filters on other types of data is 
indicated. 

The transfer function and phase angle need to be investigated further. 
The use of these functions without separation of frequencies seems to give 
almost meaningless results. 

Figures 14 and 15 show the raw data that were analyzed. 

CONCLUSION 

The FFT that has been defined and used in this report does yield 
good estimates in the frequency domain. These estimates a re  given at 
discrete intervals (Af) . The FFT,  as all other digital methods such as 
STAN o r  RAVAN, does not define energy between two adjacent frequency 
intervals. Values between adjacent points can be interpolated; however, 
caution has to be taken in the interpretation of these interpolated results. 
When more resolution is desired, a longer data record can generally be 
used to obtain this resolution. The FFT does yield results at least equal 
to previously used techniques such as RAVAN and STAN. More important, 
the speed advantage of the FFT is several magnitudes greater than the 
Blackman-Tuckey techniques used by RAVAN. The most important feature 
of the FFT is that computational algorithm hardware and core memory 
(FFA) can be added to existing computers to perform rapid real-time 
signal o r  data processing. In our investigation, the number of bits that 
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Figure 14. Raw data, Channel I. 
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Figure 15. Raw data, Channel 2, 



defined each data sample was not as critical as the sampling rate. Figures 10 
and 11 showed that reducing the A/D size from 11 bits to 6 bits only reduced 
the power spectral density (PSD) magnitude of the major five predominant 
frequencies by 10 percent. When the A/D size was reduced from 11 bits to 
2 bits, Figures 12 and 13, the PSD magnitude of the predominant frequency 
was degraded about 10 percent. A s  expected, the number of predominant 
frequencies that are detectable are fewer and the lower amplitudes are 
degraded the most when two bits are used. 

From the foregoing studies it can be concluded that quick-look 
vibrational analysis of a few channels with a digital computer is feasible for 
structural testing. A hardware Fast Fourier Analyzer ( F F A )  connected to 
the computer as a peripheral reduces considerably the analysis time , 
particularly in case a relatively slow computer is used. I t  is expected that 
with a modern medium size digital computer with an F F A ,  a complete 
quick-look vibrational analysis of a signal can be computed and displayed 
every 5 seconds. If one assumes that a waiting time of 1 minute is 
acceptable, 12 channels could be monitored simultaneously for vibrational 
analysis of structures. The study also showed that the time to display the 
data on the CRT must not be neglected, and that proper selection of the 
display unit has to be considered. 

The F F T  was used to calculate the total power in two response 
- 1 O t  

functions (time function). These two functions were 100 e and 

100 e 
The calculated values and the theoretical values were in close agreement. 
The results are summarized in Tables 11 and 12. 

-2t sin 12nt. These were chosen to represent two realizable systems. 
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ER TRANSFORM 

The spectral density functions can be defined directly by taking Fourier 
transforms [I]. There are certain theoretical requirements necessary for  the 
existence of these transforms; they will be assumed to be met, For  those 
interested, there are many rigorous treatments of the Fourier transform. The 
spectral decomposition of a time series x( t )  will be developed by assuming that 
it has a complex Fourier transform X( f) such that 

-00 

and conversely 

-00 

A sufficient condition for the existence of these integrals is that x(t) and its 
derivative t (t) be piecewise continuous in every finite interval ( a ,  b) and the 
x( t) be integrable on ( -03 , 00 ) . These conditions can be satisfied (and usually 
are)  in practical problems by setting x( t )  equal to zero outside some fixed range 
of t [that is, making x( t )  a finite time ser ies] .  

Similarly, if there exists a second time function y( t) , it will be assumed 
to have a complex Fourier transform Y(f )  such that 

-03 

and 

-03 
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In practice, x(t) and y( t )  a r e  assumed to be zero outside some range of t 
and that there a re  no frequencies above some finite frequency F. Hence, the 
integrals become 

df -j2n f t  T 

0 
X(f) = J x(t)  e 

dt 
j2n f t  F 

-F 
x(t) = J x(f)e 

and 

Also, in practical problems the time series x(t). must be sampled a t  a certain 
increment and the sampled values used. This requires the integrals to be 
redefined a s  sums of products. Usually, equal spacing is used for time and 
X( f )  and Y ( f )  a r e  calculated a t  equally spaced points of frequency. Using 

the trigonometric form of e'', these integrals become 

N-1 
X(f.) = ( A t )  x(t ) [cos 2 n f t  - j s i n2n  f t  ) 

1 k i k  i k  K=O 

and similarly for Y(f) and y( t )  . 
If X( f )  and Y(  f )  a r e  calculated for a discrete set of t values, they 

a re  referred to a s  Discrete Fourier Transforms o r  DFT. When the time series 
x( t )  is a discrete set of equally spaced numbers, there is a process of 
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T multiplication that permits faster calculation of X(f) . If t, = where 

- 
I 

I 

I 

I 
a 

I T  
T N  27r fi t l  = 27r (-) (-) = $. Then if 

k N = 2 for some integer and A f  = - T ’  
-j27r f t 

-j27r fltt k 1 kl e is denoted by a ,  then e = a . Using this notation 
X( f )  can be written a s  

. 
t 

X[ (N- I )  Af ]  - I_. 

- _c_ 

l.................l 

2 N-I I CY CY . . .  CY 

4 2( N-I) 
CY . . . C Y  

2 l a  

( N - I )  
. . . . . . . C Y  

(N-1) l a  - - 
or  XL ( f )  = A x L  (t)  , where each value of X( f )  must be multiplied by (At )  
for the true value. 

If this method is used with the following arithmetic, it is called the Fast  
Fourier Transform o r  FFT. The speed of calculation is obtained by factoring 
A in such a way a s  to minimize the complex multiplication and addition. It 

should be remembered that e = e = I for any integer k and since -27r k 0 

j 27r 

, a! 
N a = e  

kl is divided by N. Using this notation, factoring for N = 4 and N = 8 is 
given. If N = 4 (i.e., xo, xi, x2, x3 form the discrete time series), the 
matrix notation for the Discrete Fourier Transform is 

-- 
kl can be represented as  a t  where t is the remainder when 

X(f) = A t  

I 
CY 

a2 

a3 

I 

a 2  

a4 

a 6  

a 6  

C Y g  :I 
j7r a!4k+1 1 a = - -  = CY and 1 = 0, I, 2, 3 .  

I where A f  =-  T ’  2 ’  
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The Fast Fourier Transform factors A as follows: 

and R = Q =  

- 

1 0 0 1 2 0  

- 

1 0 1  

0 1 0  

o a !  

but 

QR = 
a! 

013 

i 

014 

0 1 2  

a 6  

CY3 

0 1 9  i61 
The two middle rows have to be interchanged. Hence, if one does the matrix 

multiplication y ( t )  = R[x(t)]  , then y (t) = Qy (t) . The rows must be 
decoded. Using binary subscripts and starting with 0, 

T T T 

Roo - Roo 

Roi - Rio 

Rio - Roi 

Rii - Rii 
T 

In other words the second element of ZT would be the third element of AX 

and the third element of Z would be the second element of AX . The f i rs t  
and fourth (zero  and third) would be in the same locations. 

T 

If N = 8 (i. e. , xo, xi, x2, x3, x4, x5, xg, x form the discrete time 
series) ~ the matrix multiplication for the Discrete Fourier Transform is 
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T x (fi)  = 

- 
i 

C Y 7  

CY l4 

CY 21 

Q! 28 

Q! 35 

CY 42 

49 CY - 

- 
1 

1 

1 

i 

1 

1 

1 

i - 

1 

CY 

C Y 2  

C Y 3  

C Y 4  

C Y 5  

C Y 6  

CY7 

i 

C Y 2  

C Y 4  

1 

C Y 3  

1 i i 

and X[ (k-i)A f ]  is the vector dot product of the kth row of the matrix and the 
column of x values. The powers of CY a r e  not reduced module 8 for reasons 

that will became apparent ( CY = e -'). This same matrix is used for the 
Fast Fourier Transform but is factored into three matrices and multiplied in 
that way. 

The matrix factorization is done in the following way. Take the first 
two rows ( 2  x 4 = 8) and divide each one into two equal parts. The first 
half of the first row is the diagonal of a 4 x 4 submatrix in the upper left 
corner.  The second half of the first row is the diagonal of a 4 x 4 matrix 
in the upper right corner. Then the first half of the second row is the diagonal 
of a 4 x 4 matrix in the lower left corner and the remainder of the second row is 
the diagonal of a 4 x  4 submatrix in the lower right. In short, one of the factors 
is 

R =  

- 
1 0 0  0 1 0  0 0  

0 1 0  0 0  i o 0  

0 0 1  0 0 0 i o  
0 0 0  i o  0 o i  
1 0 0  0 C Y 4 0  0 0  

O a O  0 0 C Y 5 0 0  

0 0  a 2 0  0 0 C Y 6 0  

0 0  0 a 3 0  0 0 CY7 - 
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Now, the other factor must be found. It is 

Q =  

- 
i I i 0 0  0 0 

i 0 1 2  a 4  a6 0 0 0 0 

i a4 a 8  a i 2  0 0 0 0 

i a6 a i2  a i 8  0 0 I 0 

0 0  0 0 i a 2  a4 a6 

0 0  0 0 i a 4  a 8  0112 

0 0  0 0 i a6 a i2  0118 

0 0  0 0 i l  i i 

- I 

However QR interchanges rows of A so that they occur Rl, R3, R5, R7, R2, 
R4, R,, R,. 
since if binary subscripts a r e  used this is more consistent. ) 

(Perhaps one would rather say Ro, Rz, R4, R6, Rl, R3, R5, Rp,  

Now, Q must be factored. If these a r e  designated a s  QIR1, 

where B is the matrix in the upper left hand corner. Basically the same 
procedure as  used to  get R from A is used on each 4 x 4 matrix on the diag- 
onal of Q. Then, Q is a matrix with 2 x 2 matrices on the diagonal so that 

Qi = 

- - 
l a 8 0  0 0 0 0 0 

l a 4 0 0 0 0  0 0  

O O l a 8 0 0  0 0  

o o i a 4 0 0  0 0  

O O O O i a 8 0 0  

O O O O i a 4 0 0  

0 0 0  0 0 0 l a 8  

0 0 0 0 0 0  l a 4  - - 
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Actually, one should remember that a! = I, a! = -1 and in general 

a! = a! where n = 0, I, . . e , 7; also (Q, R , )  interchanges rows of 
Q. The old rows of Q are now ordered RI', R3', R2', R4', R5', R+,  Rs', Rat ,  
where R was the kth row in Q. Hence, the rows are now ordered quite dif- 

ferently from the original matrix A. In matrix notation, the relationship can 
be written A = PQR = P( PiQIR1) R, where P is a matrix obtained from the 
identity matrix by doing to it what must be done to R to give A ;  that is, first 
row is left alone, second row becomes third, third row becomes fifth, fourth 
row becomes seventh, fifth row becomes second, sixth row becomes fourth, 
and seventh row becomes sixth. This last  row is unchanged. This gives 

( 8 k + n )  n 

k 

P =  

Now , similarly 

- 
1 0 0 0 0 0 0 0  

0 0 0 0 1 0 0 0  

0 I O  0 0 ' 0  0 0 

0 0 0 0 0 1 0 0  

0 0 1 0 0 0 0 0  

0 0 0 0 0 0 1 0  

0 0 0 1 0 0 0 0  

0 0 0 0 0 0 0 1  - 

P, = 

- - 
1 0 0 0 0 0 0 0  

0 0 1 0 0 0 0 0  

0 1 0 0 0 0 0 0  

0 0 0 1 0 0 0 0  

0 0 0 0 1 0 0 0  

0 0 0 0 0 0 1 0  

0 0 0 0 0 1 0 0  

0 0 0 0 0 0 0 1  - 

and 
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P P I  = 

In A In Product 

0 - Roo0 - Roo0 

Roo1 - Rioo 

Roio - Roio 

Roll - R1io 

Rioo - Roo1 

RIOI - RIOl 

RllO - Roll 

Rill - Rill 

- - 
i o o o o o o o  
0 0 0 0 1 0 0 0  

0 0 1 0 0 0 0 0  

0 0 0 0 0 0 1 0  

o i o o o o o o  
0 0 0 0 0 1 0 0  

0 0 0 1 0 0 0 0  

L. o o o o o o o i  - 

For clarity the fourth row starting with the 0 row of QIRIR is the first row 
of A .  

The order of multiplication then becomes 

ZT = R X T  
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T 
WT = RiZ 

UT = QIWT 

and 

x T (f)  = PP,U T 

T o r  X ( f) is UT decoded by the process explained above. The factor (At )  
is usually omitted until the last step. 

There a r e  several advantages using this method. One of these is as  
follows. X(f) is permitted to  be complex. If one has two real time series, 
let Z(ti) = x(t.) + j y(t .)  . Find the FFT of z ( t )  o r  Z ( f )  . Then 

1 1 

Z(kAf) + z [ ( N - k ) A f ]  
2 X(kAf) = 

and 

Z(kAf) - Z[(N-k)Af] Y(kAf) = 
2j 

9 

where z is the complex conjugate of Z .  

Another special application is the following. If x( t) is a discrete 
k (equally spaced) time series of length 2 , let 

be the two discrete time series of length Zk-‘ formed as  shown. Then enter 
xi( t) a s  the real  part  of x( t) and xz(t) a s  the imaginary part of x( t) in the 
matrix. Now, noting that the time spacing in xi(t) and x2(t) is 2At ,  the 
FFT of x(t) can be obtained by one pass through FFT process. Let Ai( f )  
be the transform of xi(t) and A2(f) be the transform of x2(t) .  Then, for 
the original series x(t)  

55 



j27~ k 

A l ( M f )  + A 2 ( M f ) e  

N 
2 for k < - and 

X[(N-k)Af] = X(kAf) 

N for (N-k) > 2 . 

Since the correlation function is the inverse Fourier transform of the 
power spectral density function, the FFT routine may be used to calculate the 
correlation function. Actually, the entries in the matrix notation would have 
positive powers. However, the problem is easily solved by complex arithmetic. 

Most programs use e jzn as used in this report. If this 
is the case, then the actual Fourier transform is the complex conjugate of the 
calculated FFT. If this is the case, then using S ( f )  a s  the entry for. x(t) 

-j2n f t  rather than e 

X 
yields the autocorrelation function. In matrix notation, using C (t) for the 

xx 
correlation function, 

o r  

m 

= (Af) 

rp 

- 
I . . . . . . . . .  . . .  1 

j 47~ j (  N-i) 27~ - j 271. 
N N +- n e e e 

(N-I )  j27r 
N 

j ( N-i )  22n 
N e e X[ (N-l)Af]  

.. - 

a C (t) = B X L ( f )  , xx 

where each element of B is the complex conjugate of the matrix A in the 
calculation of the FFT. In most subroutines, the matrix €3, given above is 
the one used. 
Fourier transform 

Logic steps easily change the calculated values into the correct 
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